Weekend Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dumps65

Amazon Web Services AIF-C01 Dumps

Page: 1 / 15
Total 150 questions

AWS Certified AI Practitioner Exam Questions and Answers

Question 1

Which option describes embeddings in the context of AI?

Options:

A.

A method for compressing large datasets

B.

An encryption method for securing sensitive data

C.

A method for visualizing high-dimensional data

D.

A numerical method for data representation in a reduced dimensionality space

Question 2

An ecommerce company wants to improve search engine recommendations by customizing the results for each user of the company's ecommerce platform. Which AWS service meets these requirements?

Options:

A.

Amazon Personalize

B.

Amazon Kendra

C.

Amazon Rekognition

D.

Amazon Transcribe

Question 3

A company needs to log all requests made to its Amazon Bedrock API. The company must retain the logs securely for 5 years at the lowest possible cost.

Which combination of AWS service and storage class meets these requirements? (Select TWO.)

Options:

A.

AWS CloudTrail

B.

Amazon CloudWatch

C.

AWS Audit Manager

D.

Amazon S3 Intelligent-Tiering

E.

Amazon S3 Standard

Question 4

An AI practitioner needs to improve the accuracy of a natural language generation model. The model uses rapidly changing inventory data.

Which technique will improve the model's accuracy?

Options:

A.

Transfer learning

B.

Federated learning

C.

Retrieval Augmented Generation (RAG)

D.

One-shot prompting

Question 5

A company wants to build a lead prioritization application for its employees to contact potential customers. The application must give employees the ability to view and adjust the weights assigned to different variables in the model based on domain knowledge and expertise.

Which ML model type meets these requirements?

Options:

A.

Logistic regression model

B.

Deep learning model built on principal components

C.

K-nearest neighbors (k-NN) model

D.

Neural network

Question 6

A company has built a chatbot that can respond to natural language questions with images. The company wants to ensure that the chatbot does not return inappropriate or unwanted images.

Which solution will meet these requirements?

Options:

A.

Implement moderation APIs.

B.

Retrain the model with a general public dataset.

C.

Perform model validation.

D.

Automate user feedback integration.

Question 7

A company wants to develop ML applications to improve business operations and efficiency.

Select the correct ML paradigm from the following list for each use case. Each ML paradigm should be selected one or more times. (Select FOUR.)

• Supervised learning

• Unsupervised learning

as

Options:

Question 8

Which phase of the ML lifecycle determines compliance and regulatory requirements?

Options:

A.

Feature engineering

B.

Model training

C.

Data collection

D.

Business goal identification

Question 9

Why does overfilting occur in ML models?

Options:

A.

The training dataset does not reptesent all possible input values.

B.

The model contains a regularization method.

C.

The model training stops early because of an early stopping criterion.

D.

The training dataset contains too many features.

Question 10

A company wants to keep its foundation model (FM) relevant by using the most recent data. The company wants to implement a model training strategy that includes regular updates to the FM.

Which solution meets these requirements?

Options:

A.

Batch learning

B.

Continuous pre-training

C.

Static training

D.

Latent training

Question 11

A company wants to build an ML model by using Amazon SageMaker. The company needs to share and manage variables for model development across multiple teams.

Which SageMaker feature meets these requirements?

Options:

A.

Amazon SageMaker Feature Store

B.

Amazon SageMaker Data Wrangler

C.

Amazon SageMaker Clarify

D.

Amazon SageMaker Model Cards

Question 12

A manufacturing company wants to create product descriptions in multiple languages.

Which AWS service will automate this task?

Options:

A.

Amazon Translate

B.

Amazon Transcribe

C.

Amazon Kendra

D.

Amazon Polly

Question 13

A retail store wants to predict the demand for a specific product for the next few weeks by using the Amazon SageMaker DeepAR forecasting algorithm.

Which type of data will meet this requirement?

Options:

A.

Text data

B.

Image data

C.

Time series data

D.

Binary data

Question 14

A company makes forecasts each quarter to decide how to optimize operations to meet expected demand. The company uses ML models to make these forecasts.

An AI practitioner is writing a report about the trained ML models to provide transparency and explainability to company stakeholders.

What should the AI practitioner include in the report to meet the transparency and explainability requirements?

Options:

A.

Code for model training

B.

Partial dependence plots (PDPs)

C.

Sample data for training

D.

Model convergence tables

Question 15

An AI company periodically evaluates its systems and processes with the help of independent software vendors (ISVs). The company needs to receive email message notifications when an ISV's compliance reports become available.

Which AWS service can the company use to meet this requirement?

Options:

A.

AWS Audit Manager

B.

AWS Artifact

C.

AWS Trusted Advisor

D.

AWS Data Exchange

Question 16

A company is using domain-specific models. The company wants to avoid creating new models from the beginning. The company instead wants to adapt pre-trained models to create models for new, related tasks.

Which ML strategy meets these requirements?

Options:

A.

Increase the number of epochs.

B.

Use transfer learning.

C.

Decrease the number of epochs.

D.

Use unsupervised learning.

Question 17

A large retailer receives thousands of customer support inquiries about products every day. The customer support inquiries need to be processed and responded to quickly. The company wants to implement Agents for Amazon Bedrock.

What are the key benefits of using Amazon Bedrock agents that could help this retailer?

Options:

A.

Generation of custom foundation models (FMs) to predict customer needs

B.

Automation of repetitive tasks and orchestration of complex workflows

C.

Automatically calling multiple foundation models (FMs) and consolidating the results

D.

Selecting the foundation model (FM) based on predefined criteria and metrics

Question 18

Which AW5 service makes foundation models (FMs) available to help users build and scale generative AI applications?

Options:

A.

Amazon Q Developer

B.

Amazon Bedrock

C.

Amazon Kendra

D.

Amazon Comprehend

Question 19

A manufacturing company uses AI to inspect products and find any damages or defects.

Which type of AI application is the company using?

Options:

A.

Recommendation system

B.

Natural language processing (NLP)

C.

Computer vision

D.

Image processing

Question 20

A company wants to improve the accuracy of the responses from a generative AI application. The application uses a foundation model (FM) on Amazon Bedrock.

Which solution meets these requirements MOST cost-effectively?

Options:

A.

Fine-tune the FM.

B.

Retrain the FM.

C.

Train a new FM.

D.

Use prompt engineering.

Question 21

A company is building a solution to generate images for protective eyewear. The solution must have high accuracy and must minimize the risk of incorrect annotations.

Which solution will meet these requirements?

Options:

A.

Human-in-the-loop validation by using Amazon SageMaker Ground Truth Plus

B.

Data augmentation by using an Amazon Bedrock knowledge base

C.

Image recognition by using Amazon Rekognition

D.

Data summarization by using Amazon QuickSight

Question 22

A company is using few-shot prompting on a base model that is hosted on Amazon Bedrock. The model currently uses 10 examples in the prompt. The model is invoked once daily and is performing well. The company wants to lower the monthly cost.

Which solution will meet these requirements?

Options:

A.

Customize the model by using fine-tuning.

B.

Decrease the number of tokens in the prompt.

C.

Increase the number of tokens in the prompt.

D.

Use Provisioned Throughput.

Question 23

A loan company is building a generative AI-based solution to offer new applicants discounts based on specific business criteria. The company wants to build and use an AI model responsibly to minimize bias that could negatively affect some customers.

Which actions should the company take to meet these requirements? (Select TWO.)

Options:

A.

Detect imbalances or disparities in the data.

B.

Ensure that the model runs frequently.

C.

Evaluate the model's behavior so that the company can provide transparency to stakeholders.

D.

Use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) technique to ensure that the model is 100% accurate.

E.

Ensure that the model's inference time is within the accepted limits.

Question 24

What does an F1 score measure in the context of foundation model (FM) performance?

Options:

A.

Model precision and recall.

B.

Model speed in generating responses.

C.

Financial cost of operating the model.

D.

Energy efficiency of the model's computations.

Question 25

An ecommerce company is deploying a chatbot. The chatbot will give users the ability to ask questions about the company's products and receive details on users' orders. The company must implement safeguards for the chatbot to filter harmful content from the input prompts and chatbot responses.

Which AWS feature or resource meets these requirements?

Options:

A.

Amazon Bedrock Guardrails

B.

Amazon Bedrock Agents

C.

Amazon Bedrock inference APIs

D.

Amazon Bedrock custom models

Question 26

A customer service team is developing an application to analyze customer feedback and automatically classify the feedback into different categories. The categories include product quality, customer service, and delivery experience.

Which AI concept does this scenario present?

Options:

A.

Computer vision

B.

Natural language processing (NLP)

C.

Recommendation systems

D.

Fraud detection

Question 27

An AI practitioner trained a custom model on Amazon Bedrock by using a training dataset that contains confidential data. The AI practitioner wants to ensure that the custom model does not generate inference responses based on confidential data.

How should the AI practitioner prevent responses based on confidential data?

Options:

A.

Delete the custom model. Remove the confidential data from the training dataset. Retrain the custom model.

B.

Mask the confidential data in the inference responses by using dynamic data masking.

C.

Encrypt the confidential data in the inference responses by using Amazon SageMaker.

D.

Encrypt the confidential data in the custom model by using AWS Key Management Service (AWS KMS).

Question 28

A company wants to build and deploy ML models on AWS without writing any code.

Which AWS service or feature meets these requirements?

Options:

A.

Amazon SageMaker Canvas

B.

Amazon Rekognition

C.

AWS DeepRacer

D.

Amazon Comprehend

Question 29

A company is training a foundation model (FM). The company wants to increase the accuracy of the model up to a specific acceptance level.

Which solution will meet these requirements?

Options:

A.

Decrease the batch size.

B.

Increase the epochs.

C.

Decrease the epochs.

D.

Increase the temperature parameter.

Question 30

A company has petabytes of unlabeled customer data to use for an advertisement campaign. The company wants to classify its customers into tiers to advertise and promote the company's products.

Which methodology should the company use to meet these requirements?

Options:

A.

Supervised learning

B.

Unsupervised learning

C.

Reinforcement learning

D.

Reinforcement learning from human feedback (RLHF)

Question 31

A company is building a contact center application and wants to gain insights from customer conversations. The company wants to analyze and extract key information from the audio of the customer calls.

Which solution meets these requirements?

Options:

A.

Build a conversational chatbot by using Amazon Lex.

B.

Transcribe call recordings by using Amazon Transcribe.

C.

Extract information from call recordings by using Amazon SageMaker Model Monitor.

D.

Create classification labels by using Amazon Comprehend.

Question 32

A bank is fine-tuning a large language model (LLM) on Amazon Bedrock to assist customers with questions about their loans. The bank wants to ensure that the model does not reveal any private customer data.

Which solution meets these requirements?

Options:

A.

Use Amazon Bedrock Guardrails.

B.

Remove personally identifiable information (PII) from the customer data before fine-tuning the LLM.

C.

Increase the Top-K parameter of the LLM.

D.

Store customer data in Amazon S3. Encrypt the data before fine-tuning the LLM.

Question 33

A company needs to build its own large language model (LLM) based on only the company's private data. The company is concerned about the environmental effect of the training process.

Which Amazon EC2 instance type has the LEAST environmental effect when training LLMs?

Options:

A.

Amazon EC2 C series

B.

Amazon EC2 G series

C.

Amazon EC2 P series

D.

Amazon EC2 Trn series

Question 34

An AI practitioner is using an Amazon Bedrock base model to summarize session chats from the customer service department. The AI practitioner wants to store invocation logs to monitor model input and output data.

Which strategy should the AI practitioner use?

Options:

A.

Configure AWS CloudTrail as the logs destination for the model.

B.

Enable invocation logging in Amazon Bedrock.

C.

Configure AWS Audit Manager as the logs destination for the model.

D.

Configure model invocation logging in Amazon EventBridge.

Question 35

A company wants to create a chatbot by using a foundation model (FM) on Amazon Bedrock. The FM needs to access encrypted data that is stored in an Amazon S3 bucket.

The data is encrypted with Amazon S3 managed keys (SSE-S3).

The FM encounters a failure when attempting to access the S3 bucket data.

Which solution will meet these requirements?

Options:

A.

Ensure that the role that Amazon Bedrock assumes has permission to decrypt data with the correct encryption key.

B.

Set the access permissions for the S3 buckets to allow public access to enable access over the internet.

C.

Use prompt engineering techniques to tell the model to look for information in Amazon S3.

D.

Ensure that the S3 data does not contain sensitive information.

Question 36

A law firm wants to build an AI application by using large language models (LLMs). The application will read legal documents and extract key points from the documents.

Which solution meets these requirements?

Options:

A.

Build an automatic named entity recognition system.

B.

Create a recommendation engine.

C.

Develop a summarization chatbot.

D.

Develop a multi-language translation system.

Question 37

An AI practitioner is using a large language model (LLM) to create content for marketing campaigns. The generated content sounds plausible and factual but is incorrect.

Which problem is the LLM having?

Options:

A.

Data leakage

B.

Hallucination

C.

Overfitting

D.

Underfitting

Question 38

A company is developing an ML model to predict customer churn.

Which evaluation metric will assess the model's performance on a binary classification task such as predicting chum?

Options:

A.

F1 score

B.

Mean squared error (MSE)

C.

R-squared

D.

Time used to train the model

Question 39

A company has thousands of customer support interactions per day and wants to analyze these interactions to identify frequently asked questions and develop insights.

Which AWS service can the company use to meet this requirement?

Options:

A.

Amazon Lex

B.

Amazon Comprehend

C.

Amazon Transcribe

D.

Amazon Translate

Question 40

Which scenario represents a practical use case for generative AI?

Options:

A.

Using an ML model to forecast product demand

B.

Employing a chatbot to provide human-like responses to customer queries in real time

C.

Using an analytics dashboard to track website traffic and user behavior

D.

Implementing a rule-based recommendation engine to suggest products to customers

Question 41

A company wants to create a chatbot that answers questions about human resources policies. The company is using a large language model (LLM) and has a large digital documentation base.

Which technique should the company use to optimize the generated responses?

Options:

A.

Use Retrieval Augmented Generation (RAG).

B.

Use few-shot prompting.

C.

Set the temperature to 1.

D.

Decrease the token size.

Question 42

A company is developing an ML application. The application must automatically group similar customers and products based on their characteristics.

Which ML strategy should the company use to meet these requirements?

Options:

A.

Unsupervised learning

B.

Supervised learning

C.

Reinforcement learning

D.

Semi-supervised learning

Question 43

A company wants to display the total sales for its top-selling products across various retail locations in the past 12 months.

Which AWS solution should the company use to automate the generation of graphs?

Options:

A.

Amazon Q in Amazon EC2

B.

Amazon Q Developer

C.

Amazon Q in Amazon QuickSight

D.

Amazon Q in AWS Chatbot

Question 44

A company has documents that are missing some words because of a database error. The company wants to build an ML model that can suggest potential words to fill in the missing text.

Which type of model meets this requirement?

Options:

A.

Topic modeling

B.

Clustering models

C.

Prescriptive ML models

D.

BERT-based models

Question 45

A company wants to deploy a conversational chatbot to answer customer questions. The chatbot is based on a fine-tuned Amazon SageMaker JumpStart model. The application must comply with multiple regulatory frameworks.

Which capabilities can the company show compliance for? (Select TWO.)

Options:

A.

Auto scaling inference endpoints

B.

Threat detection

C.

Data protection

D.

Cost optimization

E.

Loosely coupled microservices

Page: 1 / 15
Total 150 questions