Weekend Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dumps65

Amazon Web Services AIF-C01 Dumps

Page: 1 / 22
Total 224 questions

AWS Certified AI Practitioner Exam Questions and Answers

Question 1

Which AWS service or feature can help an AI development team quickly deploy and consume a foundation model (FM) within the team's VPC?

Options:

A.

Amazon Personalize

B.

Amazon SageMaker JumpStart

C.

PartyRock, an Amazon Bedrock Playground

D.

Amazon SageMaker endpoints

Question 2

A company is building an application that needs to generate synthetic data that is based on existing data.

Which type of model can the company use to meet this requirement?

Options:

A.

Generative adversarial network (GAN)

B.

XGBoost

C.

Residual neural network

D.

WaveNet

Question 3

A company is using a pre-trained large language model (LLM) to build a chatbot for product recommendations. The company needs the LLM outputs to be short and written in a specific language.

Which solution will align the LLM response quality with the company's expectations?

Options:

A.

Adjust the prompt.

B.

Choose an LLM of a different size.

C.

Increase the temperature.

D.

Increase the Top K value.

Question 4

A company uses a foundation model (FM) from Amazon Bedrock for an AI search tool. The company wants to fine-tune the model to be more accurate by using the company's data.

Which strategy will successfully fine-tune the model?

Options:

A.

Provide labeled data with the prompt field and the completion field.

B.

Prepare the training dataset by creating a .txt file that contains multiple lines in .csv format.

C.

Purchase Provisioned Throughput for Amazon Bedrock.

D.

Train the model on journals and textbooks.

Question 5

A company wants to develop a solution that uses generative AI to create content for product advertisements, Including sample images and slogans.

Select the correct model type from the following list for each action. Each model type should be selected one time. (Select THREE.)

• Diffusion model

• Object detection model

• Transformer-based model

as

Options:

Question 6

A company wants to use a large language model (LLM) on Amazon Bedrock for sentiment analysis. The company needs the LLM to produce more consistent responses to the same input prompt.

Which adjustment to an inference parameter should the company make to meet these requirements?

Options:

A.

Decrease the temperature value

B.

Increase the temperature value

C.

Decrease the length of output tokens

D.

Increase the maximum generation length

Question 7

A company wants to extract key insights from large policy documents to increase employee efficiency.

Options:

A.

Regression

B.

Clustering

C.

Summarization

D.

Classification

Question 8

Which term describes the numerical representations of real-world objects and concepts that AI and natural language processing (NLP) models use to improve understanding of textual information?

Options:

A.

Embeddings

B.

Tokens

C.

Models

D.

Binaries

Question 9

A company is developing an ML model to predict customer churn.

Which evaluation metric will assess the model's performance on a binary classification task such as predicting chum?

Options:

A.

F1 score

B.

Mean squared error (MSE)

C.

R-squared

D.

Time used to train the model

Question 10

An AI practitioner is writing software code. The AI practitioner wants to quickly develop a test case and create documentation for the code.

Options:

A.

Upload the code to an online coding assistant.

B.

Develop an application to use foundation models (FMs).

C.

Use Amazon Q Developer in an integrated development environment (IDE).

D.

Research and write test cases. Then, create test cases and add documentation.

Question 11

A company wants to improve multiple ML models.

Select the correct technique from the following list of use cases. Each technique should be selected one time or not at all. (Select THREE.)

    Few-shot learning

    Fine-tuning

    Retrieval Augmented Generation (RAG)

    Zero-shot learning

as

Options:

Question 12

A company needs to use Amazon SageMaker AI for model training and inference. The company must comply with regulatory requirements to run SageMaker jobs in an isolated environment without internet access.

Which solution will meet these requirements?

Options:

A.

Run SageMaker training and inference by using SageMaker Experiments.

B.

Run SageMaker training and inference by using network isolation.

C.

Encrypt the data at rest by using encryption for SageMaker geospatial capabilities.

D.

Associate appropriate AWS Identity and Access Management (IAM) roles with the SageMaker jobs.

Question 13

A company wants to use a large language model (LLM) on Amazon Bedrock for sentiment analysis. The company wants to classify the sentiment of text passages as positive or negative.

Which prompt engineering strategy meets these requirements?

Options:

A.

Provide examples of text passages with corresponding positive or negative labels in the prompt followed by the new text passage to be classified.

B.

Provide a detailed explanation of sentiment analysis and how LLMs work in the prompt.

C.

Provide the new text passage to be classified without any additional context or examples.

D.

Provide the new text passage with a few examples of unrelated tasks, such as text summarization or question answering.

Question 14

A law firm wants to build an AI application by using large language models (LLMs). The application will read legal documents and extract key points from the documents.

Which solution meets these requirements?

Options:

A.

Build an automatic named entity recognition system.

B.

Create a recommendation engine.

C.

Develop a summarization chatbot.

D.

Develop a multi-language translation system.

Question 15

A company is building a new generative AI chatbot. The chatbot uses an Amazon Bedrock foundation model (FM) to generate responses. During testing, the company notices that the chatbot is prone to prompt injection attacks.

What can the company do to secure the chatbot with the LEAST implementation effort?

Options:

A.

Fine-tune the FM to avoid harmful responses.

B.

Use Amazon Bedrock Guardrails content filters and denied topics.

C.

Change the FM to a more secure FM.

D.

Use chain-of-thought prompting to produce secure responses.

Question 16

Why does overfilting occur in ML models?

Options:

A.

The training dataset does not reptesent all possible input values.

B.

The model contains a regularization method.

C.

The model training stops early because of an early stopping criterion.

D.

The training dataset contains too many features.

Question 17

How can companies use large language models (LLMs) securely on Amazon Bedrock?

Options:

A.

Design clear and specific prompts. Configure AWS Identity and Access Management (IAM) roles and policies by using least privilege access.

B.

Enable AWS Audit Manager for automatic model evaluation jobs.

C.

Enable Amazon Bedrock automatic model evaluation jobs.

D.

Use Amazon CloudWatch Logs to make models explainable and to monitor for bias.

Question 18

A company wants to deploy a conversational chatbot to answer customer questions. The chatbot is based on a fine-tuned Amazon SageMaker JumpStart model. The application must comply with multiple regulatory frameworks.

Which capabilities can the company show compliance for? (Select TWO.)

Options:

A.

Auto scaling inference endpoints

B.

Threat detection

C.

Data protection

D.

Cost optimization

E.

Loosely coupled microservices

Question 19

A company has documents that are missing some words because of a database error. The company wants to build an ML model that can suggest potential words to fill in the missing text.

Which type of model meets this requirement?

Options:

A.

Topic modeling

B.

Clustering models

C.

Prescriptive ML models

D.

BERT-based models

Question 20

Which feature of Amazon OpenSearch Service gives companies the ability to build vector database applications?

Options:

A.

Integration with Amazon S3 for object storage

B.

Support for geospatial indexing and queries

C.

Scalable index management and nearest neighbor search capability

D.

Ability to perform real-time analysis on streaming data

Question 21

A company is using Amazon SageMaker to deploy a model that identifies if social media posts contain certain topics. The company needs to show how different input features influence model behavior.

Options:

A.

SageMaker Canvas

B.

SageMaker Clarify

C.

SageMaker Feature Store

D.

SageMaker Ground Truth

Question 22

A company needs to monitor the performance of its ML systems by using a highly scalable AWS service.

Which AWS service meets these requirements?

Options:

A.

Amazon CloudWatch

B.

AWS CloudTrail

C.

AWS Trusted Advisor

D.

AWS Config

Question 23

Which option is an example of unsupervised learning?

Options:

A.

Clustering data points into groups based on their similarity

B.

Training a model to recognize images of animals

C.

Predicting the price of a house based on the house's features

D.

Generating human-like text based on a given prompt

Question 24

A company is using a pre-trained large language model (LLM) to extract information from documents. The company noticed that a newer LLM from a different provider is available on Amazon Bedrock. The company wants to transition to the new LLM on Amazon Bedrock.

What does the company need to do to transition to the new LLM?

Options:

A.

Create a new labeled dataset

B.

Perform feature engineering.

C.

Adjust the prompt template.

D.

Fine-tune the LLM.

Question 25

A financial company uses AWS to host its generative AI models. The company must generate reports to show adherence to international regulations for handling sensitive customer data.

Options:

A.

Amazon Macie

B.

AWS Artifact

C.

AWS Secrets Manager

D.

AWS Config

Question 26

A company wants to build a lead prioritization application for its employees to contact potential customers. The application must give employees the ability to view and adjust the weights assigned to different variables in the model based on domain knowledge and expertise.

Which ML model type meets these requirements?

Options:

A.

Logistic regression model

B.

Deep learning model built on principal components

C.

K-nearest neighbors (k-NN) model

D.

Neural network

Question 27

A company is building a generative Al application and is reviewing foundation models (FMs). The company needs to consider multiple FM characteristics.

Select the correct FM characteristic from the following list for each definition. Each FM characteristic should be selected one time. (Select THREE.)

    Concurrency

    Context windows

    Latency

as

Options:

Question 28

A company wants to display the total sales for its top-selling products across various retail locations in the past 12 months.

Which AWS solution should the company use to automate the generation of graphs?

Options:

A.

Amazon Q in Amazon EC2

B.

Amazon Q Developer

C.

Amazon Q in Amazon QuickSight

D.

Amazon Q in AWS Chatbot

Question 29

A large retail bank wants to develop an ML system to help the risk management team decide on loan allocations for different demographics.

What must the bank do to develop an unbiased ML model?

Options:

A.

Reduce the size of the training dataset.

B.

Ensure that the ML model predictions are consistent with historical results.

C.

Create a different ML model for each demographic group.

D.

Measure class imbalance on the training dataset. Adapt the training process accordingly.

Question 30

A company uses Amazon SageMaker and various models fa Its AI workloads. The company needs to understand If Its AI workloads are ISO compliant.

Which AWS service or feature meets these requirements?

Options:

A.

AWS Audit Manager

B.

Amazon SageMaker Model Cards

C.

Amazon SageMaker Model Monitor

D.

AWS Artifact

Question 31

A medical company wants to develop an AI application that can access structured patient records, extract relevant information, and generate concise summaries.

Which solution will meet these requirements?

Options:

A.

Use Amazon Comprehend Medical to extract relevant medical entities and relationships. Apply rule-based logic to structure and format summaries.

B.

Use Amazon Personalize to analyze patient engagement patterns. Integrate the output with a general purpose text summarization tool.

C.

Use Amazon Textract to convert scanned documents into digital text. Design a keyword extraction system to generate summaries.

D.

Implement Amazon Kendra to provide a searchable index for medical records. Use a template-based system to format summaries.

Question 32

A publishing company built a Retrieval Augmented Generation (RAG) based solution to give its users the ability to interact with published content. New content is published daily. The company wants to provide a near real-time experience to users.

Which steps in the RAG pipeline should the company implement by using offline batch processing to meet these requirements? (Select TWO.)

Options:

A.

Generation of content embeddings

B.

Generation of embeddings for user queries

C.

Creation of the search index

D.

Retrieval of relevant content

E.

Response generation for the user

Question 33

A company wants to build an ML model by using Amazon SageMaker. The company needs to share and manage variables for model development across multiple teams.

Which SageMaker feature meets these requirements?

Options:

A.

Amazon SageMaker Feature Store

B.

Amazon SageMaker Data Wrangler

C.

Amazon SageMaker Clarify

D.

Amazon SageMaker Model Cards

Question 34

A company wants to use generative AI to increase developer productivity and software development. The company wants to use Amazon Q Developer.

What can Amazon Q Developer do to help the company meet these requirements?

Options:

A.

Create software snippets, reference tracking, and open-source license tracking.

B.

Run an application without provisioning or managing servers.

C.

Enable voice commands for coding and providing natural language search.

D.

Convert audio files to text documents by using ML models.

Question 35

A company has developed an ML model for image classification. The company wants to deploy the model to production so that a web application can use the model.

The company needs to implement a solution to host the model and serve predictions without managing any of the underlying infrastructure.

Which solution will meet these requirements?

Options:

A.

Use Amazon SageMaker Serverless Inference to deploy the model.

B.

Use Amazon CloudFront to deploy the model.

C.

Use Amazon API Gateway to host the model and serve predictions.

D.

Use AWS Batch to host the model and serve predictions.

Question 36

A company is developing a new model to predict the prices of specific items. The model performed well on the training dataset. When the company deployed the model to production, the model's performance decreased significantly.

What should the company do to mitigate this problem?

Options:

A.

Reduce the volume of data that is used in training.

B.

Add hyperparameters to the model.

C.

Increase the volume of data that is used in training.

D.

Increase the model training time.

Question 37

A company manually reviews all submitted resumes in PDF format. As the company grows, the company expects the volume of resumes to exceed the company's review capacity. The company needs an automated system to convert the PDF resumes into plain text format for additional processing.

Which AWS service meets this requirement?

Options:

A.

Amazon Textract

B.

Amazon Personalize

C.

Amazon Lex

D.

Amazon Transcribe

Question 38

A company is building an ML model. The company collected new data and analyzed the data by creating a correlation matrix, calculating statistics, and visualizing the data.

Which stage of the ML pipeline is the company currently in?

Options:

A.

Data pre-processing

B.

Feature engineering

C.

Exploratory data analysis

D.

Hyperparameter tuning

Question 39

Which AWS service or feature stores embeddings In a vector database for use with foundation models (FMs) and Retrieval Augmented Generation (RAG)?

Options:

A.

Amazon SageMaker Ground Truth

B.

Amazon OpenSearch Service

C.

Amazon Transcribe

D.

Amazon Textract

Question 40

A company has a database of petabytes of unstructured data from internal sources. The company wants to transform this data into a structured format so that its data scientists can perform machine learning (ML) tasks.

Which service will meet these requirements?

Options:

A.

Amazon Lex

B.

Amazon Rekognition

C.

Amazon Kinesis Data Streams

D.

AWS Glue

Question 41

A company is creating a model to label credit card transactions. The company has a large volume of sample transaction data to train the model. Most of the transaction data is unlabeled. The data does not contain confidential information. The company needs to obtain labeled sample data to fine-tune the model.

Options:

A.

Run batch inference jobs on the unlabeled data

B.

Run an Amazon SageMaker AI training job that uses the PyTorch Distributed library to label data

C.

Use an Amazon SageMaker Ground Truth labeling job with Amazon Mechanical Turk workers

D.

Use an optical character recognition model trained on labeled samples to label unlabeled samples

E.

Run an Amazon SageMaker AI labeling job

Question 42

A student at a university is copying content from generative AI to write essays.

Which challenge of responsible generative AI does this scenario represent?

Options:

A.

Toxicity

B.

Hallucinations

C.

Plagiarism

D.

Privacy

Question 43

An ecommerce company wants to improve search engine recommendations by customizing the results for each user of the company's ecommerce platform. Which AWS service meets these requirements?

Options:

A.

Amazon Personalize

B.

Amazon Kendra

C.

Amazon Rekognition

D.

Amazon Transcribe

Question 44

A company wants to create a new solution by using AWS Glue. The company has minimal programming experience with AWS Glue.

Which AWS service can help the company use AWS Glue?

Options:

A.

Amazon Q Developer

B.

AWS Config

C.

Amazon Personalize

D.

Amazon Comprehend

Question 45

A company has installed a security camera. The company uses an ML model to evaluate the security camera footage for potential thefts. The company has discovered that the model disproportionately flags people who are members of a specific ethnic group.

Which type of bias is affecting the model output?

Options:

A.

Measurement bias

B.

Sampling bias

C.

Observer bias

D.

Confirmation bias

Question 46

A security company is using Amazon Bedrock to run foundation models (FMs). The company wants to ensure that only authorized users invoke the models. The company needs to identify any unauthorized access attempts to set appropriate AWS Identity and Access Management (IAM) policies and roles for future iterations of the FMs.

Which AWS service should the company use to identify unauthorized users that are trying to access Amazon Bedrock?

Options:

A.

AWS Audit Manager

B.

AWS CloudTrail

C.

Amazon Fraud Detector

D.

AWS Trusted Advisor

Question 47

A company wants to implement a large language model (LLM)-based chatbot to provide customer service agents with real-time contextual responses to customers' inquiries. The company will use the company's policies as the knowledge base.

Options:

A.

Retrain the LLM on the company policy data.

B.

Fine-tune the LLM on the company policy data.

C.

Implement Retrieval Augmented Generation (RAG) for in-context responses.

D.

Use pre-training and data augmentation on the company policy data.

Question 48

A company is using a large language model (LLM) on Amazon Bedrock to build a chatbot. The chatbot processes customer support requests. To resolve a request, the customer and the chatbot must interact a few times.

Which solution gives the LLM the ability to use content from previous customer messages?

Options:

A.

Turn on model invocation logging to collect messages.

B.

Add messages to the model prompt.

C.

Use Amazon Personalize to save conversation history.

D.

Use Provisioned Throughput for the LLM.

Question 49

A retail company wants to build an ML model to recommend products to customers. The company wants to build the model based on responsible practices. Which practice should the company apply when collecting data to decrease model bias?

Options:

A.

Use data from only customers who match the demography of the company's overall customer base.

B.

Collect data from customers who have a past purchase history.

C.

Ensure that the data is balanced and collected from a diverse group.

D.

Ensure that the data is from a publicly available dataset.

Question 50

A company wants to use a pre-trained generative AI model to generate content for its marketing campaigns. The company needs to ensure that the generated content aligns with the company's brand voice and messaging requirements.

Which solution meets these requirements?

Options:

A.

Optimize the model's architecture and hyperparameters to improve the model's overall performance.

B.

Increase the model's complexity by adding more layers to the model's architecture.

C.

Create effective prompts that provide clear instructions and context to guide the model's generation.

D.

Select a large, diverse dataset to pre-train a new generative model.

Question 51

A company wants to use language models to create an application for inference on edge devices. The inference must have the lowest latency possible.

Which solution will meet these requirements?

Options:

A.

Deploy optimized small language models (SLMs) on edge devices.

B.

Deploy optimized large language models (LLMs) on edge devices.

C.

Incorporate a centralized small language model (SLM) API for asynchronous communication with edge devices.

D.

Incorporate a centralized large language model (LLM) API for asynchronous communication with edge devices.

Question 52

A company wants to build and deploy ML models on AWS without writing any code.

Which AWS service or feature meets these requirements?

Options:

A.

Amazon SageMaker Canvas

B.

Amazon Rekognition

C.

AWS DeepRacer

D.

Amazon Comprehend

Question 53

A company needs to choose a model from Amazon Bedrock to use internally. The company must identify a model that generates responses in a style that the company's employees prefer.

What should the company do to meet these requirements?

Options:

A.

Evaluate the models by using built-in prompt datasets.

B.

Evaluate the models by using a human workforce and custom prompt datasets.

C.

Use public model leaderboards to identify the model.

D.

Use the model InvocationLatency runtime metrics in Amazon CloudWatch when trying models.

Question 54

A social media company wants to use a large language model (LLM) to summarize messages. The company has chosen a few LLMs that are available on Amazon SageMaker JumpStart. The company wants to compare the generated output toxicity of these models.

Which strategy gives the company the ability to evaluate the LLMs with the LEAST operational overhead?

Options:

A.

Crowd-sourced evaluation

B.

Automatic model evaluation

C.

Model evaluation with human workers

D.

Reinforcement learning from human feedback (RLHF)

Question 55

A company is developing an ML application. The application must automatically group similar customers and products based on their characteristics.

Which ML strategy should the company use to meet these requirements?

Options:

A.

Unsupervised learning

B.

Supervised learning

C.

Reinforcement learning

D.

Semi-supervised learning

Question 56

A company has petabytes of unlabeled customer data to use for an advertisement campaign. The company wants to classify its customers into tiers to advertise and promote the company's products.

Which methodology should the company use to meet these requirements?

Options:

A.

Supervised learning

B.

Unsupervised learning

C.

Reinforcement learning

D.

Reinforcement learning from human feedback (RLHF)

Question 57

A company built a deep learning model for object detection and deployed the model to production.

Which AI process occurs when the model analyzes a new image to identify objects?

Options:

A.

Training

B.

Inference

C.

Model deployment

D.

Bias correction

Question 58

A company wants to classify human genes into 20 categories based on gene characteristics. The company needs an ML algorithm to document how the inner mechanism of the model affects the output.

Which ML algorithm meets these requirements?

Options:

A.

Decision trees

B.

Linear regression

C.

Logistic regression

D.

Neural networks

Question 59

A company needs to build its own large language model (LLM) based on only the company's private data. The company is concerned about the environmental effect of the training process.

Which Amazon EC2 instance type has the LEAST environmental effect when training LLMs?

Options:

A.

Amazon EC2 C series

B.

Amazon EC2 G series

C.

Amazon EC2 P series

D.

Amazon EC2 Trn series

Question 60

A company that uses multiple ML models wants to identify changes in original model quality so that the company can resolve any issues.

Which AWS service or feature meets these requirements?

Options:

A.

Amazon SageMaker JumpStart

B.

Amazon SageMaker HyperPod

C.

Amazon SageMaker Data Wrangler

D.

Amazon SageMaker Model Monitor

Question 61

A hospital is developing an AI system to assist doctors in diagnosing diseases based on patient records and medical images. To comply with regulations, the sensitive patient data must not leave the country the data is located in.

Which data governance strategy will ensure compliance and protect patient privacy?

Options:

A.

Data residency

B.

Data quality

C.

Data discoverability

D.

Data enrichment

Question 62

A company is using domain-specific models. The company wants to avoid creating new models from the beginning. The company instead wants to adapt pre-trained models to create models for new, related tasks.

Which ML strategy meets these requirements?

Options:

A.

Increase the number of epochs.

B.

Use transfer learning.

C.

Decrease the number of epochs.

D.

Use unsupervised learning.

Question 63

A company acquires International Organization for Standardization (ISO) accreditation to manage AI risks and to use AI responsibly. What does this accreditation certify?

Options:

A.

All members of the company are ISO certified.

B.

All AI systems that the company uses are ISO certified.

C.

All AI application team members are ISO certified.

D.

The company’s development framework is ISO certified.

Question 64

A bank is building a chatbot to answer customer questions about opening a bank account. The chatbot will use public bank documents to generate responses. The company will use Amazon Bedrock and prompt engineering to improve the chatbot's responses.

Which prompt engineering technique meets these requirements?

Options:

A.

Complexity-based prompting

B.

Zero-shot prompting

C.

Few-shot prompting

D.

Directional stimulus prompting

Question 65

A company is building a solution to generate images for protective eyewear. The solution must have high accuracy and must minimize the risk of incorrect annotations.

Which solution will meet these requirements?

Options:

A.

Human-in-the-loop validation by using Amazon SageMaker Ground Truth Plus

B.

Data augmentation by using an Amazon Bedrock knowledge base

C.

Image recognition by using Amazon Rekognition

D.

Data summarization by using Amazon QuickSight

Question 66

A company is building a chatbot to improve user experience. The company is using a large language model (LLM) from Amazon Bedrock for intent detection. The company wants to use few-shot learning to improve intent detection accuracy.

Which additional data does the company need to meet these requirements?

Options:

A.

Pairs of chatbot responses and correct user intents

B.

Pairs of user messages and correct chatbot responses

C.

Pairs of user messages and correct user intents

D.

Pairs of user intents and correct chatbot responses

Question 67

A company is using Amazon SageMaker Studio notebooks to build and train ML models. The company stores the data in an Amazon S3 bucket. The company needs to manage the flow of data from Amazon S3 to SageMaker Studio notebooks.

Which solution will meet this requirement?

Options:

A.

Use Amazon Inspector to monitor SageMaker Studio.

B.

Use Amazon Macie to monitor SageMaker Studio.

C.

Configure SageMaker to use a VPC with an S3 endpoint.

D.

Configure SageMaker to use S3 Glacier Deep Archive.

Page: 1 / 22
Total 224 questions