Summer Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: wrap60

Amazon Web Services Data-Engineer-Associate Dumps

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

An airline company is collecting metrics about flight activities for analytics. The company is conducting a proof of concept (POC) test to show how analytics can provide insights that the company can use to increase on-time departures.

The POC test uses objects in Amazon S3 that contain the metrics in .csv format. The POC test uses Amazon Athena to query the data. The data is partitioned in the S3 bucket by date.

As the amount of data increases, the company wants to optimize the storage solution to improve query performance.

Which combination of solutions will meet these requirements? (Choose two.)

Options:

A.

Add a randomized string to the beginning of the keys in Amazon S3 to get more throughput across partitions.

B.

Use an S3 bucket that is in the same account that uses Athena to query the data.

C.

Use an S3 bucket that is in the same AWS Region where the company runs Athena queries.

D.

Preprocess the .csv data to JSON format by fetching only the document keys that the query requires.

E.

Preprocess the .csv data to Apache Parquet format by fetching only the data blocks that are needed for predicates.

Question 2

A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.

A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.

Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)

Options:

A.

Partition the data that is in the S3 bucket. Organize the data by year, month, and day.

B.

Increase the AWS Glue instance size by scaling up the worker type.

C.

Convert the AWS Glue schema to the DynamicFrame schema class.

D.

Adjust AWS Glue job scheduling frequency so the jobs run half as many times each day.

E.

Modify the 1AM role that grants access to AWS glue to grant access to all S3 features.

Question 3

A data engineer is launching an Amazon EMR duster. The data that the data engineer needs to load into the new cluster is currently in an Amazon S3 bucket. The data engineer needs to ensure that data is encrypted both at rest and in transit.

The data that is in the S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The data engineer has an Amazon S3 path that has a Privacy Enhanced Mail (PEM) file.

Which solution will meet these requirements?

Options:

A.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Create a second security configuration. Specify the Amazon S3 path of the PEM file for in-transit encryption. Create the EMR cluster, and attach both security configurations to the cluster.

B.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for local disk encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Use the security configuration during EMR cluster creation.

C.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Use the security configuration during EMR cluster creation.

D.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Create the EMR cluster, and attach the security configuration to the cluster.

Question 4

An ecommerce company wants to use AWS to migrate data pipelines from an on-premises environment into the AWS Cloud. The company currently uses a third-party too in the on-premises environment to orchestrate data ingestion processes.

The company wants a migration solution that does not require the company to manage servers. The solution must be able to orchestrate Python and Bash scripts. The solution must not require the company to refactor any code.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

AWS Lambda

B.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

C.

AWS Step Functions

D.

AWS Glue

Question 5

A data engineer uses Amazon Kinesis Data Streams to ingest and process records that contain user behavior data from an application every day.

The data engineer notices that the data stream is experiencing throttling because hot shards receive much more data than other shards in the data stream.

How should the data engineer resolve the throttling issue?

Options:

A.

Use a random partition key to distribute the ingested records.

B.

Increase the number of shards in the data stream. Distribute the records across the shards.

C.

Limit the number of records that are sent each second by the producer to match the capacity of the stream.

D.

Decrease the size of the records that the producer sends to match the capacity of the stream.

Question 6

A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.

A data engineer notices that one of the fields in the source data includes values that are in JSON format.

How should the data engineer load the JSON data into the data warehouse with the LEAST effort?

Options:

A.

Use the SUPER data type to store the data in the Amazon Redshift table.

B.

Use AWS Glue to flatten the JSON data and ingest it into the Amazon Redshift table.

C.

Use Amazon S3 to store the JSON data. Use Amazon Athena to query the data.

D.

Use an AWS Lambda function to flatten the JSON data. Store the data in Amazon S3.

Question 7

A company wants to implement real-time analytics capabilities. The company wants to use Amazon Kinesis Data Streams and Amazon Redshift to ingest and process streaming data at the rate of several gigabytes per second. The company wants to derive near real-time insights by using existing business intelligence (BI) and analytics tools.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Kinesis Data Streams to stage data in Amazon S3. Use the COPY command to load data from Amazon S3 directly into Amazon Redshift to make the data immediately available for real-time analysis.

B.

Access the data from Kinesis Data Streams by using SQL queries. Create materialized views directly on top of the stream. Refresh the materialized views regularly to query the most recent stream data.

C.

Create an external schema in Amazon Redshift to map the data from Kinesis Data Streams to an Amazon Redshift object. Create a materialized view to read data from the stream. Set the materialized view to auto refresh.

D.

Connect Kinesis Data Streams to Amazon Kinesis Data Firehose. Use Kinesis Data Firehose to stage the data in Amazon S3. Use the COPY command to load the data from Amazon S3 to a table in Amazon Redshift.

Question 8

A company is using Amazon Redshift to build a data warehouse solution. The company is loading hundreds of tiles into a tact table that is in a Redshift cluster.

The company wants the data warehouse solution to achieve the greatest possible throughput. The solution must use cluster resources optimally when the company loads data into the tact table.

Which solution will meet these requirements?

Options:

A.

Use multiple COPY commands to load the data into the Redshift cluster.

B.

Use S3DistCp to load multiple files into Hadoop Distributed File System (HDFS). Use an HDFS connector to ingest the data into the Redshift cluster.

C.

Use a number of INSERT statements equal to the number of Redshift cluster nodes. Load the data in parallel into each node.

D.

Use a single COPY command to load the data into the Redshift cluster.

Question 9

A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.

Which combination of AWS services will implement a data mesh? (Choose two.)

Options:

A.

Use Amazon Aurora for data storage. Use an Amazon Redshift provisioned cluster for data analysis.

B.

Use Amazon S3 for data storage. Use Amazon Athena for data analysis.

C.

Use AWS Glue DataBrewfor centralized data governance and access control.

D.

Use Amazon RDS for data storage. Use Amazon EMR for data analysis.

E.

Use AWS Lake Formation for centralized data governance and access control.

Question 10

A company uses an Amazon Redshift provisioned cluster as its database. The Redshift cluster has five reserved ra3.4xlarge nodes and uses key distribution.

A data engineer notices that one of the nodes frequently has a CPU load over 90%. SQL Queries that run on the node are queued. The other four nodes usually have a CPU load under 15% during daily operations.

The data engineer wants to maintain the current number of compute nodes. The data engineer also wants to balance the load more evenly across all five compute nodes.

Which solution will meet these requirements?

Options:

A.

Change the sort key to be the data column that is most often used in a WHERE clause of the SQL SELECT statement.

B.

Change the distribution key to the table column that has the largest dimension.

C.

Upgrade the reserved node from ra3.4xlarqe to ra3.16xlarqe.

D.

Change the primary key to be the data column that is most often used in a WHERE clause of the SQL SELECT statement.

Question 11

A company is building a data lake for a new analytics team. The company is using Amazon S3 for storage and Amazon Athena for query analysis. All data that is in Amazon S3 is in Apache Parquet format.

The company is running a new Oracle database as a source system in the company's data center. The company has 70 tables in the Oracle database. All the tables have primary keys. Data can occasionally change in the source system. The company wants to ingest the tables every day into the data lake.

Which solution will meet this requirement with the LEAST effort?

Options:

A.

Create an Apache Sqoop job in Amazon EMR to read the data from the Oracle database. Configure the Sqoop job to write the data to Amazon S3 in Parquet format.

B.

Create an AWS Glue connection to the Oracle database. Create an AWS Glue bookmark job to ingest the data incrementally and to write the data to Amazon S3 in Parquet format.

C.

Create an AWS Database Migration Service (AWS DMS) task for ongoing replication. Set the Oracle database as the source. Set Amazon S3 as the target. Configure the task to write the data in Parquet format.

D.

Create an Oracle database in Amazon RDS. Use AWS Database Migration Service (AWS DMS) to migrate the on-premises Oracle database to Amazon RDS. Configure triggers on the tables to invoke AWS Lambda functions to write changed records to Amazon S3 in Parquet format.

Question 12

A mobile gaming company wants to capture data from its gaming app. The company wants to make the data available to three internal consumers of the data. The data records are approximately 20 KB in size.

The company wants to achieve optimal throughput from each device that runs the gaming app. Additionally, the company wants to develop an application to process data streams. The stream-processing application must have dedicated throughput for each internal consumer.

Which solution will meet these requirements?

Options:

A.

Configure the mobile app to call the PutRecords API operation to send data to Amazon Kinesis Data Streams. Use the enhanced fan-out feature with a stream for each internal consumer.

B.

Configure the mobile app to call the PutRecordBatch API operation to send data to Amazon Data Firehose. Submit an AWS Support case to turn on dedicated throughput for the company's AWS account. Allow each internal consumer to access the stream.

C.

Configure the mobile app to use the Amazon Kinesis Producer Library (KPL) to send data to Amazon Data Firehose. Use the enhanced fan-out feature with a stream for each internal consumer.

D.

Configure the mobile app to call the PutRecords API operation to send data to Amazon Kinesis Data Streams. Host the stream-processing application for each internal consumer on Amazon EC2 instances. Configure auto scaling for the EC2 instances.

Question 13

A sales company uses AWS Glue ETL to collect, process, and ingest data into an Amazon S3 bucket. The AWS Glue pipeline creates a new file in the S3 bucket every hour. File sizes vary from 200 KB to 300 KB. The company wants to build a sales prediction model by using data from the previous 5 years. The historic data includes 44,000 files.

The company builds a second AWS Glue ETL pipeline by using the smallest worker type. The second pipeline retrieves the historic files from the S3 bucket and processes the files for downstream analysis. The company notices significant performance issues with the second ETL pipeline.

The company needs to improve the performance of the second pipeline.

Which solution will meet this requirement MOST cost-effectively?

Options:

A.

Use a larger worker type.

B.

Increase the number of workers in the AWS Glue ETL jobs.

C.

Use the AWS Glue DynamicFrame grouping option.

D.

Enable AWS Glue auto scaling.

Question 14

A company ingests data from multiple data sources and stores the data in an Amazon S3 bucket. An AWS Glue extract, transform, and load (ETL) job transforms the data and writes the transformed data to an Amazon S3 based data lake. The company uses Amazon Athena to query the data that is in the data lake.

The company needs to identify matching records even when the records do not have a common unique identifier.

Which solution will meet this requirement?

Options:

A.

Use Amazon Made pattern matching as part of the ETL job.

B.

Train and use the AWS Glue PySpark Filter class in the ETL job.

C.

Partition tables and use the ETL job to partition the data on a unique identifier.

D.

Train and use the AWS Lake Formation FindMatches transform in the ETL job.

Question 15

A data engineer needs to use an Amazon QuickSight dashboard that is based on Amazon Athena queries on data that is stored in an Amazon S3 bucket. When the data engineer connects to the QuickSight dashboard, the data engineer receives an error message that indicates insufficient permissions.

Which factors could cause to the permissions-related errors? (Choose two.)

Options:

A.

There is no connection between QuickSgqht and Athena.

B.

The Athena tables are not cataloged.

C.

QuickSiqht does not have access to the S3 bucket.

D.

QuickSight does not have access to decrypt S3 data.

E.

There is no 1AM role assigned to QuickSiqht.

Question 16

A company plans to use Amazon Kinesis Data Firehose to store data in Amazon S3. The source data consists of 2 MB csv files. The company must convert the .csv files to JSON format. The company must store the files in Apache Parquet format.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use Kinesis Data Firehose to convert the csv files to JSON. Use an AWS Lambda function to store the files in Parquet format.

B.

Use Kinesis Data Firehose to convert the csv files to JSON and to store the files in Parquet format.

C.

Use Kinesis Data Firehose to invoke an AWS Lambda function that transforms the .csv files to JSON and stores the files in Parquet format.

D.

Use Kinesis Data Firehose to invoke an AWS Lambda function that transforms the .csv files to JSON. Use Kinesis Data Firehose to store the files in Parquet format.

Question 17

A company has a frontend ReactJS website that uses Amazon API Gateway to invoke REST APIs. The APIs perform the functionality of the website. A data engineer needs to write a Python script that can be occasionally invoked through API Gateway. The code must return results to API Gateway.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a custom Python script on an Amazon Elastic Container Service (Amazon ECS) cluster.

B.

Create an AWS Lambda Python function with provisioned concurrency.

C.

Deploy a custom Python script that can integrate with API Gateway on Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Create an AWS Lambda function. Ensure that the function is warm by scheduling an Amazon EventBridge rule to invoke the Lambda function every 5 minutes by using mock events.

Question 18

A company is designing a serverless data processing workflow in AWS Step Functions that involves multiple steps. The processing workflow ingests data from an external API, transforms the data by using multiple AWS Lambda functions, and loads the transformed data into Amazon DynamoDB.

The company needs the workflow to perform specific steps based on the content of the incoming data.

Which Step Functions state type should the company use to meet this requirement?

Options:

A.

Parallel

B.

Choice

C.

Task

D.

Map

Question 19

A company stores employee data in Amazon Redshift A table named Employee uses columns named Region ID, Department ID, and Role ID as a compound sort key. Which queries will MOST increase the speed of a query by using a compound sort key of the table? (Select TWO.)

Options:

A.

Select * from Employee where Region ID='North America';

B.

Select * from Employee where Region ID='North America' and Department ID=20;

C.

Select * from Employee where Department ID=20 and Region ID='North America';

D.

Select " from Employee where Role ID=50;

E.

Select * from Employee where Region ID='North America' and Role ID=50;

Question 20

A company loads transaction data for each day into Amazon Redshift tables at the end of each day. The company wants to have the ability to track which tables have been loaded and which tables still need to be loaded.

A data engineer wants to store the load statuses of Redshift tables in an Amazon DynamoDB table. The data engineer creates an AWS Lambda function to publish the details of the load statuses to DynamoDB.

How should the data engineer invoke the Lambda function to write load statuses to the DynamoDB table?

Options:

A.

Use a second Lambda function to invoke the first Lambda function based on Amazon CloudWatch events.

B.

Use the Amazon Redshift Data API to publish an event to Amazon EventBridqe. Configure an EventBridge rule to invoke the Lambda function.

C.

Use the Amazon Redshift Data API to publish a message to an Amazon Simple Queue Service (Amazon SQS) queue. Configure the SQS queue to invoke the Lambda function.

D.

Use a second Lambda function to invoke the first Lambda function based on AWS CloudTrail events.

Question 21

A marketing company uses Amazon S3 to store marketing data. The company uses versioning in some buckets. The company runs several jobs to read and load data into the buckets.

To help cost-optimize its storage, the company wants to gather information about incomplete multipart uploads and outdated versions that are present in the S3 buckets.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use AWS CLI to gather the information.

B.

Use Amazon S3 Inventory configurations reports to gather the information.

C.

Use the Amazon S3 Storage Lens dashboard to gather the information.

D.

Use AWS usage reports for Amazon S3 to gather the information.

Question 22

A company receives .csv files that contain physical address data. The data is in columns that have the following names: Door_No, Street_Name, City, and Zip_Code. The company wants to create a single column to store these values in the following format:

as

Which solution will meet this requirement with the LEAST coding effort?

Options:

A.

Use AWS Glue DataBrew to read the files. Use the NEST TO ARRAY transformation to create the new column.

B.

Use AWS Glue DataBrew to read the files. Use the NEST TO MAP transformation to create the new column.

C.

Use AWS Glue DataBrew to read the files. Use the PIVOT transformation to create the new column.

D.

Write a Lambda function in Python to read the files. Use the Python data dictionary type to create the new column.

Question 23

A company stores logs in an Amazon S3 bucket. When a data engineer attempts to access several log files, the data engineer discovers that some files have been unintentionally deleted.

The data engineer needs a solution that will prevent unintentional file deletion in the future.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Manually back up the S3 bucket on a regular basis.

B.

Enable S3 Versioning for the S3 bucket.

C.

Configure replication for the S3 bucket.

D.

Use an Amazon S3 Glacier storage class to archive the data that is in the S3 bucket.

Question 24

A company stores data from an application in an Amazon DynamoDB table that operates in provisioned capacity mode. The workloads of the application have predictable throughput load on a regular schedule. Every Monday, there is an immediate increase in activity early in the morning. The application has very low usage during weekends.

The company must ensure that the application performs consistently during peak usage times.

Which solution will meet these requirements in the MOST cost-effective way?

Options:

A.

Increase the provisioned capacity to the maximum capacity that is currently present during peak load times.

B.

Divide the table into two tables. Provision each table with half of the provisioned capacity of the original table. Spread queries evenly across both tables.

C.

Use AWS Application Auto Scaling to schedule higher provisioned capacity for peak usage times. Schedule lower capacity during off-peak times.

D.

Change the capacity mode from provisioned to on-demand. Configure the table to scale up and scale down based on the load on the table.

Question 25

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

Options:

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

Question 26

A retail company uses an Amazon Redshift data warehouse and an Amazon S3 bucket. The company ingests retail order data into the S3 bucket every day.

The company stores all order data at a single path within the S3 bucket. The data has more than 100 columns. The company ingests the order data from a third-party application that generates more than 30 files in CSV format every day. Each CSV file is between 50 and 70 MB in size.

The company uses Amazon Redshift Spectrum to run queries that select sets of columns. Users aggregate metrics based on daily orders. Recently, users have reported that the performance of the queries has degraded. A data engineer must resolve the performance issues for the queries.

Which combination of steps will meet this requirement with LEAST developmental effort? (Select TWO.)

Options:

A.

Configure the third-party application to create the files in a columnar format.

B.

Develop an AWS Glue ETL job to convert the multiple daily CSV files to one file for each day.

C.

Partition the order data in the S3 bucket based on order date.

D.

Configure the third-party application to create the files in JSON format.

E.

Load the JSON data into the Amazon Redshift table in a SUPER type column.

Question 27

A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.

The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.

Which solution will meet these requirements with the LEAST implementation effort?

Options:

A.

Add a new transform that is defined by a SQL query to each Glue ETL job. Use the SQL query to implement a ruleset that includes the data quality rules that need to be evaluated.

B.

Add a new Evaluate Data Quality transform to each Glue ETL job. Use Data Quality Definition Language (DQDL) to implement a ruleset that includes the data quality rules that need to be evaluated.

C.

Add a new custom transform to each Glue ETL job. Use the PyDeequ library to implement a ruleset that includes the data quality rules that need to be evaluated.

D.

Add a new custom transform to each Glue ETL job. Use the Great Expectations library to implement a ruleset that includes the data quality rules that need to be evaluated.

Question 28

A data engineer needs to maintain a central metadata repository that users access through Amazon EMR and Amazon Athena queries. The repository needs to provide the schema and properties of many tables. Some of the metadata is stored in Apache Hive. The data engineer needs to import the metadata from Hive into the central metadata repository.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use Amazon EMR and Apache Ranger.

B.

Use a Hive metastore on an EMR cluster.

C.

Use the AWS Glue Data Catalog.

D.

Use a metastore on an Amazon RDS for MySQL DB instance.

Question 29

A company wants to migrate data from an Amazon RDS for PostgreSQL DB instance in the eu-east-1 Region of an AWS account named Account_A. The company will migrate the data to an Amazon Redshift cluster in the eu-west-1 Region of an AWS account named Account_B.

Which solution will give AWS Database Migration Service (AWS DMS) the ability to replicate data between two data stores?

Options:

A.

Set up an AWS DMS replication instance in Account_B in eu-west-1.

B.

Set up an AWS DMS replication instance in Account_B in eu-east-1.

C.

Set up an AWS DMS replication instance in a new AWS account in eu-west-1

D.

Set up an AWS DMS replication instance in Account_A in eu-east-1.

Question 30

An ecommerce company processes millions of orders each day. The company uses AWS Glue ETL to collect data from multiple sources, clean the data, and store the data in an Amazon S3 bucket in CSV format by using the S3 Standard storage class. The company uses the stored data to conduct daily analysis.

The company wants to optimize costs for data storage and retrieval.

Which solution will meet this requirement?

Options:

A.

Transition the data to Amazon S3 Glacier Flexible Retrieval.

B.

Transition the data from Amazon S3 to an Amazon Aurora cluster.

C.

Configure AWS Glue ETL to transform the incoming data to Apache Parquet format.

D.

Configure AWS Glue ETL to use Amazon EMR to process incoming data in parallel.

Question 31

A transportation company wants to track vehicle movements by capturing geolocation records. The records are 10 bytes in size. The company receives up to 10,000 records every second. Data transmission delays of a few minutes are acceptable because of unreliable network conditions.

The transportation company wants to use Amazon Kinesis Data Streams to ingest the geolocation data. The company needs a reliable mechanism to send data to Kinesis Data Streams. The company needs to maximize the throughput efficiency of the Kinesis shards.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Kinesis Agent

B.

Kinesis Producer Library (KPL)

C.

Amazon Data Firehose

D.

Kinesis SDK

Question 32

A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.

The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.

Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)

Options:

A.

Use FluentBit to collect logs. Use OpenTelemetry to collect traces.

B.

Use Amazon CloudWatch to collect logs. Use Amazon Kinesis to collect traces.

C.

Use Amazon CloudWatch to collect logs. Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) to collect traces.

D.

Use Amazon OpenSearch to correlate the logs and traces.

E.

Use AWS Glue to correlate the logs and traces.

Question 33

A company is planning to migrate on-premises Apache Hadoop clusters to Amazon EMR. The company also needs to migrate a data catalog into a persistent storage solution.

The company currently stores the data catalog in an on-premises Apache Hive metastore on the Hadoop clusters. The company requires a serverless solution to migrate the data catalog.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use AWS Database Migration Service (AWS DMS) to migrate the Hive metastore into Amazon S3. Configure AWS Glue Data Catalog to scan Amazon S3 to produce the data catalog.

B.

Configure a Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use AWS Glue Data Catalog to store the company's data catalog as an external data catalog.

C.

Configure an external Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use Amazon Aurora MySQL to store the company's data catalog.

D.

Configure a new Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use the new metastore as the company's data catalog.

Question 34

A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.

The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.

A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use native Amazon Redshift, Teradata, and BigQuery connectors to build the pipeline in AWS Glue. Use native AWS Glue transforms to join the data. Run a Merge operation on the data lake Iceberg table.

B.

Use the Amazon Athena federated query connectors for Amazon Redshift, Teradata, and BigQuery to build the pipeline in Athena. Write a SQL query to read from all the data sources, join the data, and run a Merge operation on the data lake Iceberg table.

C.

Use the native Amazon Redshift connector, the Java Database Connectivity (JDBC) connector for Teradata, and the open source Apache Spark BigQuery connector to build the pipeline in Amazon EMR. Write code in PySpark to join the data. Run a Merge operation on the data lake Iceberg table.

D.

Use the native Amazon Redshift, Teradata, and BigQuery connectors in Amazon Appflow to write data to Amazon S3 and AWS Glue Data Catalog. Use Amazon Athena to join the data. Run a Merge operation on the data lake Iceberg table.

Question 35

The company stores a large volume of customer records in Amazon S3. To comply with regulations, the company must be able to access new customer records immediately for the first 30 days after the records are created. The company accesses records that are older than 30 days infrequently.

The company needs to cost-optimize its Amazon S3 storage.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Apply a lifecycle policy to transition records to S3 Standard Infrequent-Access (S3 Standard-IA) storage after 30 days.

B.

Use S3 Intelligent-Tiering storage.

C.

Transition records to S3 Glacier Deep Archive storage after 30 days.

D.

Use S3 Standard-Infrequent Access (S3 Standard-IA) storage for all customer records.

Question 36

A media company wants to improve a system that recommends media content to customer based on user behavior and preferences. To improve the recommendation system, the company needs to incorporate insights from third-party datasets into the company's existing analytics platform.

The company wants to minimize the effort and time required to incorporate third-party datasets.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use API calls to access and integrate third-party datasets from AWS Data Exchange.

B.

Use API calls to access and integrate third-party datasets from AWS

C.

Use Amazon Kinesis Data Streams to access and integrate third-party datasets from AWS CodeCommit repositories.

D.

Use Amazon Kinesis Data Streams to access and integrate third-party datasets from Amazon Elastic Container Registry (Amazon ECR).

Question 37

A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.

The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.

Which solution will meet these requirements?

Options:

A.

Use a provisioned Amazon EMR cluster to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

B.

Load all the data files in parallel into Amazon Aurora. Run an AWS Glue job to load the data into Amazon Redshift.

C.

Use an AWS Glue job to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

D.

Create a manifest file that contains the data file locations. Use a COPY command to load the data into Amazon Redshift.

Question 38

A technology company currently uses Amazon Kinesis Data Streams to collect log data in real time. The company wants to use Amazon Redshift for downstream real-time queries and to enrich the log data.

Which solution will ingest data into Amazon Redshift with the LEAST operational overhead?

Options:

A.

Set up an Amazon Data Firehose delivery stream to send data to a Redshift provisioned cluster table.

B.

Set up an Amazon Data Firehose delivery stream to send data to Amazon S3. Configure a Redshift provisioned cluster to load data every minute.

C.

Configure Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to send data directly to a Redshift provisioned cluster table.

D.

Use Amazon Redshift streaming ingestion from Kinesis Data Streams and to present data as a materialized view.

Question 39

A gaming company uses Amazon Kinesis Data Streams to collect clickstream data. The company uses Amazon Kinesis Data Firehose delivery streams to store the data in JSON format in Amazon S3. Data scientists at the company use Amazon Athena to query the most recent data to obtain business insights.

The company wants to reduce Athena costs but does not want to recreate the data pipeline.

Which solution will meet these requirements with the LEAST management effort?

Options:

A.

Change the Firehose output format to Apache Parquet. Provide a custom S3 object YYYYMMDD prefix expression and specify a large buffer size. For the existing data, create an AWS Glue extract, transform, and load (ETL) job. Configure the ETL job to combine small JSON files, convert the JSON files to large Parquet files, and add the YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena

B.

Create an Apache Spark job that combines JSON files and converts the JSON files to Apache Parquet files. Launch an Amazon EMR ephemeral cluster every day to run the Spark job to create new Parquet files in a different S3 location. Use the ALTER TABLE SET LOCATION statement to reflect the new S3 location on the existing Athena table.

C.

Create a Kinesis data stream as a delivery destination for Firehose. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to run Apache Flink on the Kinesis data stream. Use Flink to aggregate the data and save the data to Amazon S3 in Apache Parquet format with a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.<

D.

Integrate an AWS Lambda function with Firehose to convert source records to Apache Parquet and write them to Amazon S3. In parallel, run an AWS Glue extract, transform, and load (ETL) job to combine the JSON files and convert the JSON files to large Parquet files. Create a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.

Question 40

A company stores datasets in JSON format and .csv format in an Amazon S3 bucket. The company has Amazon RDS for Microsoft SQL Server databases, Amazon DynamoDB tables that are in provisioned capacity mode, and an Amazon Redshift cluster. A data engineering team must develop a solution that will give data scientists the ability to query all data sources by using syntax similar to SQL.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use Amazon Athena to query the data. Use SQL for structured data sources. Use PartiQL for data that is stored in JSON format.

B.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use Redshift Spectrum to query the data. Use SQL for structured data sources. Use PartiQL for data that is stored in JSON format.

C.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use AWS Glue jobs to transform data that is in JSON format to Apache Parquet or .csv format. Store the transformed data in an S3 bucket. Use Amazon Athena to query the original and transformed data from the S3 bucket.

D.

Use AWS Lake Formation to create a data lake. Use Lake Formation jobs to transform the data from all data sources to Apache Parquet format. Store the transformed data in an S3 bucket. Use Amazon Athena or Redshift Spectrum to query the data.

Question 41

A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.

The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Create an AWS Glue partition index. Enable partition filtering.

B.

Bucket the data based on a column that the data have in common in a WHERE clause of the user query

C.

Use Athena partition projection based on the S3 bucket prefix.

D.

Transform the data that is in the S3 bucket to Apache Parquet format.

E.

Use the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects.

Question 42

A company is migrating its database servers from Amazon EC2 instances that run Microsoft SQL Server to Amazon RDS for Microsoft SQL Server DB instances. The company's analytics team must export large data elements every day until the migration is complete. The data elements are the result of SQL joins across multiple tables. The data must be in Apache Parquet format. The analytics team must store the data in Amazon S3.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create an AWS Glue job that selects the data directly from the view and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

B.

Schedule SQL Server Agent to run a daily SQL query that selects the desired data elements from the EC2 instance-based SQL Server databases. Configure the query to direct the output .csv objects to an S3 bucket. Create an S3 event that invokes an AWS Lambda function to transform the output format from .csv to Parquet.

C.

Use a SQL query to create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create and run an AWS Glue crawler to read the view. Create an AWS Glue job that retrieves the data and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

D.

Create an AWS Lambda function that queries the EC2 instance-based databases by using Java Database Connectivity (JDBC). Configure the Lambda function to retrieve the required data, transform the data into Parquet format, and transfer the data into an S3 bucket. Use Amazon EventBridge to schedule the Lambda function to run every day.

Question 43

A data engineer has two datasets that contain sales information for multiple cities and states. One dataset is named reference, and the other dataset is named primary.

The data engineer needs a solution to determine whether a specific set of values in the city and state columns of the primary dataset exactly match the same specific values in the reference dataset. The data engineer wants to useData Quality Definition Language (DQDL)rules in an AWS Glue Data Quality job.

Which rule will meet these requirements?

Options:

A.

DatasetMatch "reference" "city->ref_city, state->ref_state" = 1.0

B.

ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" = 1.0

C.

DatasetMatch "reference" "city->ref_city, state->ref_state" = 100

D.

ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" = 100

Question 44

A retail company uses Amazon Aurora PostgreSQL to process and store live transactional data. The company uses an Amazon Redshift cluster for a data warehouse.

An extract, transform, and load (ETL) job runs every morning to update the Redshift cluster with new data from the PostgreSQL database. The company has grown rapidly and needs to cost optimize the Redshift cluster.

A data engineer needs to create a solution to archive historical data. The data engineer must be able to run analytics queries that effectively combine data from live transactional data in PostgreSQL, current data in Redshift, and archived historical data. The solution must keep only the most recent 15 months of data in Amazon Redshift to reduce costs.

Which combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Configure the Amazon Redshift Federated Query feature to query live transactional data that is in the PostgreSQL database.

B.

Configure Amazon Redshift Spectrum to query live transactional data that is in the PostgreSQL database.

C.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 by using the UNLOAD command. Delete the old data from the Redshift cluster. Configure Amazon Redshift Spectrum to access historical data in Amazon S3.

D.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 Glacier Flexible Retrieval by using the UNLOAD command. Delete the old data from the Redshift duster. Configure Redshift Spectrum to access historical data from S3 Glacier Flexible Retrieval.

E.

Create a materialized view in Amazon Redshift that combines live, current, and historical data from different sources.

Question 45

A financial services company stores financial data in Amazon Redshift. A data engineer wants to run real-time queries on the financial data to support a web-based trading application. The data engineer wants to run the queries from within the trading application.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Establish WebSocket connections to Amazon Redshift.

B.

Use the Amazon Redshift Data API.

C.

Set up Java Database Connectivity (JDBC) connections to Amazon Redshift.

D.

Store frequently accessed data in Amazon S3. Use Amazon S3 Select to run the queries.

Question 46

A retail company has a customer data hub in an Amazon S3 bucket. Employees from many countries use the data hub to support company-wide analytics. A governance team must ensure that the company's data analysts can access data only for customers who are within the same country as the analysts.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Create a separate table for each country's customer data. Provide access to each analyst based on the country that the analyst serves.

B.

Register the S3 bucket as a data lake location in AWS Lake Formation. Use the Lake Formation row-level security features to enforce the company's access policies.

C.

Move the data to AWS Regions that are close to the countries where the customers are. Provide access to each analyst based on the country that the analyst serves.

D.

Load the data into Amazon Redshift. Create a view for each country. Create separate 1AM roles for each country to provide access to data from each country. Assign the appropriate roles to the analysts.

Question 47

A retail company is using an Amazon Redshift cluster to support real-time inventory management. The company has deployed an ML model on a real-time endpoint in Amazon SageMaker.

The company wants to make real-time inventory recommendations. The company also wants to make predictions about future inventory needs.

Which solutions will meet these requirements? (Select TWO.)

Options:

A.

Use Amazon Redshift ML to generate inventory recommendations.

B.

Use SQL to invoke a remote SageMaker endpoint for prediction.

C.

Use Amazon Redshift ML to schedule regular data exports for offline model training.

D.

Use SageMaker Autopilot to create inventory management dashboards in Amazon Redshift.

E.

Use Amazon Redshift as a file storage system to archive old inventory management reports.

Question 48

A company runs multiple applications on AWS. The company configured each application to output logs. The company wants to query and visualize the application logs in near real time.

Which solution will meet these requirements?

Options:

A.

Configure the applications to output logs to Amazon CloudWatch Logs log groups. Create an Amazon S3 bucket. Create an AWS Lambda function that runs on a schedule to export the required log groups to the S3 bucket. Use Amazon Athena to query the log data in the S3 bucket.

B.

Create an Amazon OpenSearch Service domain. Configure the applications to output logs to Amazon CloudWatch Logs log groups. Create an OpenSearch Service subscription filter for each log group to stream the data to OpenSearch. Create the required queries and dashboards in OpenSearch Service to analyze and visualize the data.

C.

Configure the applications to output logs to Amazon CloudWatch Logs log groups. Use CloudWatch log anomaly detection to query and visualize the log data.

D.

Update the application code to send the log data to Amazon QuickSight by using Super-fast, Parallel, In-memory Calculation Engine (SPICE). Create the required analyses and dashboards in QuickSight.

Question 49

A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use an AWS Glue crawler to scan the S3 buckets and RDS databases and build a data catalog. Use data stewards to inspect the data and update the data catalog with the data format.

B.

Use an AWS Glue crawler to build a data catalog. Use AWS Glue crawler classifiers to recognize the format of data and store the format in the catalog.

C.

Use Amazon Macie to build a data catalog and to identify sensitive data elements. Collect the data format information from Macie.

D.

Use scripts to scan data elements and to assign data classifications based on the format of the data.

Question 50

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling betweenone to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.

Page: 1 / 19
Total 187 questions