Weekend Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dumps65

Databricks Databricks-Certified-Professional-Data-Engineer Dumps

Databricks Certified Data Engineer Professional Exam Questions and Answers

Question 1

A junior data engineer has manually configured a series of jobs using the Databricks Jobs UI. Upon reviewing their work, the engineer realizes that they are listed as the "Owner" for each job. They attempt to transfer "Owner" privileges to the "DevOps" group, but cannot successfully accomplish this task.

Which statement explains what is preventing this privilege transfer?

Options:

A.

Databricks jobs must have exactly one owner; "Owner" privileges cannot be assigned to a group.

B.

The creator of a Databricks job will always have "Owner" privileges; this configuration cannot be changed.

C.

Other than the default "admins" group, only individual users can be granted privileges on jobs.

D.

A user can only transfer job ownership to a group if they are also a member of that group.

E.

Only workspace administrators can grant "Owner" privileges to a group.

Question 2

An upstream source writes Parquet data as hourly batches to directories named with the current date. A nightly batch job runs the following code to ingest all data from the previous day as indicated by the date variable:

Assume that the fields customer_id and order_id serve as a composite key to uniquely identify each order.

If the upstream system is known to occasionally produce duplicate entries for a single order hours apart, which statement is correct?

Options:

A.

Each write to the orders table will only contain unique records, and only those records without duplicates in the target table will be written.

B.

Each write to the orders table will only contain unique records, but newly written records may have duplicates already present in the target table.

C.

Each write to the orders table will only contain unique records; if existing records with the same key are present in the target table, these records will be overwritten.

D.

Each write to the orders table will only contain unique records; if existing records with the same key are present in the target table, the operation will tail.

E.

Each write to the orders table will run deduplication over the union of new and existing records, ensuring no duplicate records are present.

Question 3

A Delta Lake table was created with the below query:

Consider the following query:

DROP TABLE prod.sales_by_store -

If this statement is executed by a workspace admin, which result will occur?

Options:

A.

Nothing will occur until a COMMIT command is executed.

B.

The table will be removed from the catalog but the data will remain in storage.

C.

The table will be removed from the catalog and the data will be deleted.

D.

An error will occur because Delta Lake prevents the deletion of production data.

E.

Data will be marked as deleted but still recoverable with Time Travel.

Question 4

Assuming that the Databricks CLI has been installed and configured correctly, which Databricks CLI command can be used to upload a custom Python Wheel to object storage mounted with the DBFS for use with a production job?

Options:

A.

configure

B.

fs

C.

jobs

D.

libraries

E.

workspace

Question 5

Which configuration parameter directly affects the size of a spark-partition upon ingestion of data into Spark?

Options:

A.

spark.sql.files.maxPartitionBytes

B.

spark.sql.autoBroadcastJoinThreshold

C.

spark.sql.files.openCostInBytes

D.

spark.sql.adaptive.coalescePartitions.minPartitionNum

E.

spark.sql.adaptive.advisoryPartitionSizeInBytes

Question 6

A data engineer needs to capture pipeline settings from an existing in the workspace, and use them to create and version a JSON file to create a new pipeline.

Which command should the data engineer enter in a web terminal configured with the Databricks CLI?

Options:

A.

Use the get command to capture the settings for the existing pipeline; remove the pipeline_id and rename the pipeline; use this in a create command

B.

Stop the existing pipeline; use the returned settings in a reset command

C.

Use the alone command to create a copy of an existing pipeline; use the get JSON command to get the pipeline definition; save this to git

D.

Use list pipelines to get the specs for all pipelines; get the pipeline spec from the return results parse and use this to create a pipeline

Question 7

A Delta Lake table representing metadata about content posts from users has the following schema:

user_id LONG, post_text STRING, post_id STRING, longitude FLOAT, latitude FLOAT, post_time TIMESTAMP, date DATE

This table is partitioned by the date column. A query is run with the following filter:

longitude < 20 & longitude > -20

Which statement describes how data will be filtered?

Options:

A.

Statistics in the Delta Log will be used to identify partitions that might Include files in the filtered range.

B.

No file skipping will occur because the optimizer does not know the relationship between the partition column and the longitude.

C.

The Delta Engine will use row-level statistics in the transaction log to identify the flies that meet the filter criteria.

D.

Statistics in the Delta Log will be used to identify data files that might include records in the filtered range.

E.

The Delta Engine will scan the parquet file footers to identify each row that meets the filter criteria.

Question 8

A CHECK constraint has been successfully added to the Delta table named activity_details using the following logic:

A batch job is attempting to insert new records to the table, including a record where latitude = 45.50 and longitude = 212.67.

Which statement describes the outcome of this batch insert?

Options:

A.

The write will fail when the violating record is reached; any records previously processed will be recorded to the target table.

B.

The write will fail completely because of the constraint violation and no records will be inserted into the target table.

C.

The write will insert all records except those that violate the table constraints; the violating records will be recorded to a quarantine table.

D.

The write will include all records in the target table; any violations will be indicated in the boolean column named valid_coordinates.

E.

The write will insert all records except those that violate the table constraints; the violating records will be reported in a warning log.

Question 9

The data engineering team maintains the following code:

Assuming that this code produces logically correct results and the data in the source table has been de-duplicated and validated, which statement describes what will occur when this code is executed?

Options:

A.

The silver_customer_sales table will be overwritten by aggregated values calculated from all records in the gold_customer_lifetime_sales_summary table as a batch job.

B.

A batch job will update the gold_customer_lifetime_sales_summary table, replacing only those rows that have different values than the current version of the table, using customer_id as the primary key.

C.

The gold_customer_lifetime_sales_summary table will be overwritten by aggregated values calculated from all records in the silver_customer_sales table as a batch job.

D.

An incremental job will leverage running information in the state store to update aggregate values in the gold_customer_lifetime_sales_summary table.

E.

An incremental job will detect if new rows have been written to the silver_customer_sales table; if new rows are detected, all aggregates will be recalculated and used to overwrite the gold_customer_lifetime_sales_summary table.

Question 10

The business reporting tem requires that data for their dashboards be updated every hour. The total processing time for the pipeline that extracts transforms and load the data for their pipeline runs in 10 minutes.

Assuming normal operating conditions, which configuration will meet their service-level agreement requirements with the lowest cost?

Options:

A.

Schedule a jo to execute the pipeline once and hour on a dedicated interactive cluster.

B.

Schedule a Structured Streaming job with a trigger interval of 60 minutes.

C.

Schedule a job to execute the pipeline once hour on a new job cluster.

D.

Configure a job that executes every time new data lands in a given directory.

Question 11

Which statement describes the correct use of pyspark.sql.functions.broadcast?

Options:

A.

It marks a column as having low enough cardinality to properly map distinct values to available partitions, allowing a broadcast join.

B.

It marks a column as small enough to store in memory on all executors, allowing a broadcast join.

C.

It caches a copy of the indicated table on attached storage volumes for all active clusters within a Databricks workspace.

D.

It marks a DataFrame as small enough to store in memory on all executors, allowing a broadcast join.

E.

It caches a copy of the indicated table on all nodes in the cluster for use in all future queries during the cluster lifetime.

Question 12

The business reporting team requires that data for their dashboards be updated every hour. The total processing time for the pipeline that extracts, transforms, and loads the data for their pipeline runs in 10 minutes. Assuming normal operating conditions, which configuration will meet their service-level agreement requirements with the lowest cost?

Options:

A.

Schedule a job to execute the pipeline once an hour on a dedicated interactive cluster.

B.

Schedule a job to execute the pipeline once an hour on a new job cluster.

C.

Schedule a Structured Streaming job with a trigger interval of 60 minutes.

D.

Configure a job that executes every time new data lands in a given directory.

Question 13

Which distribution does Databricks support for installing custom Python code packages?

Options:

A.

sbt

B.

CRAN

C.

CRAM

D.

nom

E.

Wheels

F.

jars

Question 14

Which statement describes Delta Lake Auto Compaction?

Options:

A.

An asynchronous job runs after the write completes to detect if files could be further compacted; if yes, an optimize job is executed toward a default of 1 GB.

B.

Before a Jobs cluster terminates, optimize is executed on all tables modified during the most recent job.

C.

Optimized writes use logical partitions instead of directory partitions; because partition boundaries are only represented in metadata, fewer small files are written.

D.

Data is queued in a messaging bus instead of committing data directly to memory; all data is committed from the messaging bus in one batch once the job is complete.

E.

An asynchronous job runs after the write completes to detect if files could be further compacted; if yes, an optimize job is executed toward a default of 128 MB.

Question 15

The view updates represents an incremental batch of all newly ingested data to be inserted or updated in the customers table.

The following logic is used to process these records.

Which statement describes this implementation?

Options:

A.

The customers table is implemented as a Type 3 table; old values are maintained as a new column alongside the current value.

B.

The customers table is implemented as a Type 2 table; old values are maintained but marked as no longer current and new values are inserted.

C.

The customers table is implemented as a Type 0 table; all writes are append only with no changes to existing values.

D.

The customers table is implemented as a Type 1 table; old values are overwritten by new values and no history is maintained.

E.

The customers table is implemented as a Type 2 table; old values are overwritten and new customers are appended.

Question 16

A data engineer wants to join a stream of advertisement impressions (when an ad was shown) with another stream of user clicks on advertisements to correlate when impression led to monitizable clicks.

Which solution would improve the performance?

A)

B)

C)

D)

Options:

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Question 17

A data engineer is configuring a pipeline that will potentially see late-arriving, duplicate records.

In addition to de-duplicating records within the batch, which of the following approaches allows the data engineer to deduplicate data against previously processed records as it is inserted into a Delta table?

Options:

A.

Set the configuration delta.deduplicate = true.

B.

VACUUM the Delta table after each batch completes.

C.

Perform an insert-only merge with a matching condition on a unique key.

D.

Perform a full outer join on a unique key and overwrite existing data.

E.

Rely on Delta Lake schema enforcement to prevent duplicate records.

Question 18

A data engineer wants to create a cluster using the Databricks CLI for a big ETL pipeline. The cluster should have five workers, one driver of type i3.xlarge, and should use the '14.3.x-scala2.12' runtime.

Which command should the data engineer use?

Options:

A.

databricks clusters create 14.3.x-scala2.12 --num-workers 5 --node-type-id i3.xlarge --cluster-name DataEngineer_cluster

B.

databricks clusters add 14.3.x-scala2.12 --num-workers 5 --node-type-id i3.xlarge --cluster-name Data Engineer_cluster

C.

databricks compute add 14.3.x-scala2.12 --num-workers 5 --node-type-id i3.xlarge --cluster-name Data Engineer_cluster

D.

databricks compute create 14.3.x-scala2.12 --num-workers 5 --node-type-id i3.xlarge --cluster-name Data Engineer_cluster

Question 19

A small company based in the United States has recently contracted a consulting firm in India to implement several new data engineering pipelines to power artificial intelligence applications. All the company's data is stored in regional cloud storage in the United States.

The workspace administrator at the company is uncertain about where the Databricks workspace used by the contractors should be deployed.

Assuming that all data governance considerations are accounted for, which statement accurately informs this decision?

Options:

A.

Databricks runs HDFS on cloud volume storage; as such, cloud virtual machines must be deployed in the region where the data is stored.

B.

Databricks workspaces do not rely on any regional infrastructure; as such, the decision should be made based upon what is most convenient for the workspace administrator.

C.

Cross-region reads and writes can incur significant costs and latency; whenever possible, compute should be deployed in the same region the data is stored.

D.

Databricks leverages user workstations as the driver during interactive development; as such, users should always use a workspace deployed in a region they are physically near.

E.

Databricks notebooks send all executable code from the user's browser to virtual machines over the open internet; whenever possible, choosing a workspace region near the end users is the most secure.

Question 20

Which statement characterizes the general programming model used by Spark Structured Streaming?

Options:

A.

Structured Streaming leverages the parallel processing of GPUs to achieve highly parallel data throughput.

B.

Structured Streaming is implemented as a messaging bus and is derived from Apache Kafka.

C.

Structured Streaming uses specialized hardware and I/O streams to achieve sub-second latency for data transfer.

D.

Structured Streaming models new data arriving in a data stream as new rows appended to an unbounded table.

E.

Structured Streaming relies on a distributed network of nodes that hold incremental state values for cached stages.

Question 21

The data engineering team is migrating an enterprise system with thousands of tables and views into the Lakehouse. They plan to implement the target architecture using a series of bronze, silver, and gold tables. Bronze tables will almost exclusively be used by production data engineering workloads, while silver tables will be used to support both data engineering and machine learning workloads. Gold tables will largely serve business intelligence and reporting purposes. While personal identifying information (PII) exists in all tiers of data, pseudonymization and anonymization rules are in place for all data at the silver and gold levels.

The organization is interested in reducing security concerns while maximizing the ability to collaborate across diverse teams.

Which statement exemplifies best practices for implementing this system?

Options:

A.

Isolating tables in separate databases based on data quality tiers allows for easy permissions management through database ACLs and allows physical separation of default storage locations for managed tables.

B.

Because databases on Databricks are merely a logical construct, choices around database organization do not impact security or discoverability in the Lakehouse.

C.

Storinq all production tables in a single database provides a unified view of all data assets available throughout the Lakehouse, simplifying discoverability by granting all users view privileges on this database.

D.

Working in the default Databricks database provides the greatest security when working with managed tables, as these will be created in the DBFS root.

E.

Because all tables must live in the same storage containers used for the database they're created in, organizations should be prepared to create between dozens and thousands of databases depending on their data isolation requirements.

Question 22

A user new to Databricks is trying to troubleshoot long execution times for some pipeline logic they are working on. Presently, the user is executing code cell-by-cell, using display() calls to confirm code is producing the logically correct results as new transformations are added to an operation. To get a measure of average time to execute, the user is running each cell multiple times interactively.

Which of the following adjustments will get a more accurate measure of how code is likely to perform in production?

Options:

A.

Scala is the only language that can be accurately tested using interactive notebooks; because the best performance is achieved by using Scala code compiled to JARs. all PySpark and Spark SQL logic should be refactored.

B.

The only way to meaningfully troubleshoot code execution times in development notebooks Is to use production-sized data and production-sized clusters with Run All execution.

C.

Production code development should only be done using an IDE; executing code against a local build of open source Spark and Delta Lake will provide the most accurate benchmarks for how code will perform in production.

D.

Calling display () forces a job to trigger, while many transformations will only add to the logical query plan; because of caching, repeated execution of the same logic does not provide meaningful results.

E.

The Jobs Ul should be leveraged to occasionally run the notebook as a job and track execution time during incremental code development because Photon can only be enabled on clusters launched for scheduled jobs.

Question 23

The data engineer is using Spark's MEMORY_ONLY storage level.

Which indicators should the data engineer look for in the spark UI's Storage tab to signal that a cached table is not performing optimally?

Options:

A.

Size on Disk is> 0

B.

The number of Cached Partitions> the number of Spark Partitions

C.

The RDD Block Name included the '' annotation signaling failure to cache

D.

On Heap Memory Usage is within 75% of off Heap Memory usage

Question 24

To reduce storage and compute costs, the data engineering team has been tasked with curating a series of aggregate tables leveraged by business intelligence dashboards, customer-facing applications, production machine learning models, and ad hoc analytical queries.

The data engineering team has been made aware of new requirements from a customer-facing application, which is the only downstream workload they manage entirely. As a result, an aggregate table used by numerous teams across the organization will need to have a number of fields renamed, and additional fields will also be added.

Which of the solutions addresses the situation while minimally interrupting other teams in the organization without increasing the number of tables that need to be managed?

Options:

A.

Send all users notice that the schema for the table will be changing; include in the communication the logic necessary to revert the new table schema to match historic queries.

B.

Configure a new table with all the requisite fields and new names and use this as the source for the customer-facing application; create a view that maintains the original data schema and table name by aliasing select fields from the new table.

C.

Create a new table with the required schema and new fields and use Delta Lake's deep clone functionality to sync up changes committed to one table to the corresponding table.

D.

Replace the current table definition with a logical view defined with the query logic currently writing the aggregate table; create a new table to power the customer-facing application.

E.

Add a table comment warning all users that the table schema and field names will be changing on a given date; overwrite the table in place to the specifications of the customer-facing application.

Question 25

The view updates represents an incremental batch of all newly ingested data to be inserted or updated in the customers table.

The following logic is used to process these records.

MERGE INTO customers

USING (

SELECT updates.customer_id as merge_ey, updates .*

FROM updates

UNION ALL

SELECT NULL as merge_key, updates .*

FROM updates JOIN customers

ON updates.customer_id = customers.customer_id

WHERE customers.current = true AND updates.address <> customers.address

) staged_updates

ON customers.customer_id = mergekey

WHEN MATCHED AND customers. current = true AND customers.address <> staged_updates.address THEN

UPDATE SET current = false, end_date = staged_updates.effective_date

WHEN NOT MATCHED THEN

INSERT (customer_id, address, current, effective_date, end_date)

VALUES (staged_updates.customer_id, staged_updates.address, true, staged_updates.effective_date, null)

Which statement describes this implementation?

    The customers table is implemented as a Type 2 table; old values are overwritten and new customers are appended.

Options:

A.

The customers table is implemented as a Type 1 table; old values are overwritten by new values and no history is maintained.

B.

The customers table is implemented as a Type 2 table; old values are maintained but marked as no longer current and new values are inserted.

C.

The customers table is implemented as a Type 0 table; all writes are append only with no changes to existing values.

Question 26

Which statement describes integration testing?

Options:

A.

Validates interactions between subsystems of your application

B.

Requires an automated testing framework

C.

Requires manual intervention

D.

Validates an application use case

E.

Validates behavior of individual elements of your application

Question 27

Which statement describes the default execution mode for Databricks Auto Loader?

Options:

A.

New files are identified by listing the input directory; new files are incrementally and idempotently loaded into the target Delta Lake table.

B.

Cloud vendor-specific queue storage and notification services are configured to track newly arriving files; new files are incrementally and impotently into the target Delta Lake table.

C.

Webhook trigger Databricks job to run anytime new data arrives in a source directory; new data automatically merged into target tables using rules inferred from the data.

D.

New files are identified by listing the input directory; the target table is materialized by directory querying all valid files in the source directory.

Question 28

What statement is true regarding the retention of job run history?

Options:

A.

It is retained until you export or delete job run logs

B.

It is retained for 30 days, during which time you can deliver job run logs to DBFS or S3

C.

t is retained for 60 days, during which you can export notebook run results to HTML

D.

It is retained for 60 days, after which logs are archived

E.

It is retained for 90 days or until the run-id is re-used through custom run configuration

Question 29

A DLT pipeline includes the following streaming tables:

Raw_lot ingest raw device measurement data from a heart rate tracking device.

Bgm_stats incrementally computes user statistics based on BPM measurements from raw_lot.

How can the data engineer configure this pipeline to be able to retain manually deleted or updated records in the raw_iot table while recomputing the downstream table when a pipeline update is run?

Options:

A.

Set the skipChangeCommits flag to true on bpm_stats

B.

Set the SkipChangeCommits flag to true raw_lot

C.

Set the pipelines, reset, allowed property to false on bpm_stats

D.

Set the pipelines, reset, allowed property to false on raw_iot

Question 30

A Databricks SQL dashboard has been configured to monitor the total number of records present in a collection of Delta Lake tables using the following query pattern:

SELECT COUNT (*) FROM table -

Which of the following describes how results are generated each time the dashboard is updated?

Options:

A.

The total count of rows is calculated by scanning all data files

B.

The total count of rows will be returned from cached results unless REFRESH is run

C.

The total count of records is calculated from the Delta transaction logs

D.

The total count of records is calculated from the parquet file metadata

E.

The total count of records is calculated from the Hive metastore

Question 31

A Structured Streaming job deployed to production has been experiencing delays during peak hours of the day. At present, during normal execution, each microbatch of data is processed in less than 3 seconds. During peak hours of the day, execution time for each microbatch becomes very inconsistent, sometimes exceeding 30 seconds. The streaming write is currently configured with a trigger interval of 10 seconds.

Holding all other variables constant and assuming records need to be processed in less than 10 seconds, which adjustment will meet the requirement?

Options:

A.

Decrease the trigger interval to 5 seconds; triggering batches more frequently allows idle executors to begin processing the next batch while longer running tasks from previous batches finish.

B.

Increase the trigger interval to 30 seconds; setting the trigger interval near the maximum execution time observed for each batch is always best practice to ensure no records are dropped.

C.

The trigger interval cannot be modified without modifying the checkpoint directory; to maintain the current stream state, increase the number of shuffle partitions to maximize parallelism.

D.

Use the trigger once option and configure a Databricks job to execute the query every 10 seconds; this ensures all backlogged records are processed with each batch.

E.

Decrease the trigger interval to 5 seconds; triggering batches more frequently may prevent records from backing up and large batches from causing spill.

Question 32

Incorporating unit tests into a PySpark application requires upfront attention to the design of your jobs, or a potentially significant refactoring of existing code.

Which statement describes a main benefit that offset this additional effort?

Options:

A.

Improves the quality of your data

B.

Validates a complete use case of your application

C.

Troubleshooting is easier since all steps are isolated and tested individually

D.

Yields faster deployment and execution times

E.

Ensures that all steps interact correctly to achieve the desired end result

Question 33

When evaluating the Ganglia Metrics for a given cluster with 3 executor nodes, which indicator would signal proper utilization of the VM's resources?

Options:

A.

The five Minute Load Average remains consistent/flat

B.

Bytes Received never exceeds 80 million bytes per second

C.

Network I/O never spikes

D.

Total Disk Space remains constant

E.

CPU Utilization is around 75%

Question 34

The data science team has created and logged a production model using MLflow. The following code correctly imports and applies the production model to output the predictions as a new DataFrame named preds with the schema "customer_id LONG, predictions DOUBLE, date DATE".

The data science team would like predictions saved to a Delta Lake table with the ability to compare all predictions across time. Churn predictions will be made at most once per day.

Which code block accomplishes this task while minimizing potential compute costs?

Options:

A.

preds.write.mode("append").saveAsTable("churn_preds")

B.

preds.write.format("delta").save("/preds/churn_preds")

C)

D)

E)

C.

Option A

D.

Option B

E.

Option C

F.

Option D

G.

Option E

Question 35

A Databricks job has been configured with 3 tasks, each of which is a Databricks notebook. Task A does not depend on other tasks. Tasks B and C run in parallel, with each having a serial dependency on Task A.

If task A fails during a scheduled run, which statement describes the results of this run?

Options:

A.

Because all tasks are managed as a dependency graph, no changes will be committed to the Lakehouse until all tasks have successfully been completed.

B.

Tasks B and C will attempt to run as configured; any changes made in task A will be rolled back due to task failure.

C.

Unless all tasks complete successfully, no changes will be committed to the Lakehouse; because task A failed, all commits will be rolled back automatically.

D.

Tasks B and C will be skipped; some logic expressed in task A may have been committed before task failure.

E.

Tasks B and C will be skipped; task A will not commit any changes because of stage failure.

Question 36

Which statement describes Delta Lake optimized writes?

Options:

A.

A shuffle occurs prior to writing to try to group data together resulting in fewer files instead of each executor writing multiple files based on directory partitions.

B.

Optimized writes logical partitions instead of directory partitions partition boundaries are only represented in metadata fewer small files are written.

C.

An asynchronous job runs after the write completes to detect if files could be further compacted; yes, an OPTIMIZE job is executed toward a default of 1 GB.

D.

Before a job cluster terminates, OPTIMIZE is executed on all tables modified during the most recent job.

Question 37

A data engineer, User A, has promoted a new pipeline to production by using the REST API to programmatically create several jobs. A DevOps engineer, User B, has configured an external orchestration tool to trigger job runs through the REST API. Both users authorized the REST API calls using their personal access tokens.

Which statement describes the contents of the workspace audit logs concerning these events?

Options:

A.

Because the REST API was used for job creation and triggering runs, a Service Principal will be automatically used to identity these events.

B.

Because User B last configured the jobs, their identity will be associated with both the job creation events and the job run events.

C.

Because these events are managed separately, User A will have their identity associated with the job creation events and User B will have their identity associated with the job run events.

D.

Because the REST API was used for job creation and triggering runs, user identity will not be captured in the audit logs.

E.

Because User A created the jobs, their identity will be associated with both the job creation events and the job run events.

Question 38

A Delta Lake table representing metadata about content from user has the following schema:

user_id LONG, post_text STRING, post_id STRING, longitude FLOAT, latitude FLOAT, post_time TIMESTAMP, date DATE

Based on the above schema, which column is a good candidate for partitioning the Delta Table?

Options:

A.

Date

B.

Post_id

C.

User_id

D.

Post_time

Question 39

A data engineer wants to reflector the following DLT code, which includes multiple definition with very similar code:

In an attempt to programmatically create these tables using a parameterized table definition, the data engineer writes the following code.

The pipeline runs an update with this refactored code, but generates a different DAG showing incorrect configuration values for tables.

How can the data engineer fix this?

Options:

A.

Convert the list of configuration values to a dictionary of table settings, using table names as keys.

B.

Convert the list of configuration values to a dictionary of table settings, using different input the for loop.

C.

Load the configuration values for these tables from a separate file, located at a path provided by a pipeline parameter.

D.

Wrap the loop inside another table definition, using generalized names and properties to replace with those from the inner table

Question 40

What is a method of installing a Python package scoped at the notebook level to all nodes in the currently active cluster?

Options:

A.

Use &Pip install in a notebook cell

B.

Run source env/bin/activate in a notebook setup script

C.

Install libraries from PyPi using the cluster UI

D.

Use &sh install in a notebook cell

Page: 1 / 20
Total 195 questions